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Spatially heterogeneous dynamics in a model for granular compaction
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We suggest the emergence of spatially correlated dynamics in slowly compacting dense granular media by
analyzing analytically and numerically multipoint correlation functions in a simple particle model character-
ized by slow nonequilibrium dynamics. We show that the logarithmically slow dynamics at large times is
accompanied by spatially extended dynamic structures that resemble the ones observed in glass-forming
liquids and dense colloidal suspensions. This suggests that dynamic heterogeneity is another key common

feature present in very different jamming materials.
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When a pile of grains is gently shaken, its volume fraction
increases so slowly that the process hardly becomes station-
ary on experimental time scales [1,2]. This is reminiscent of
the slow relaxation observed in glass formers, as noted long
ago [3]. From a more fundamental point of view, it is tempt-
ing to build upon analogies and suggest that granular media,
glasses, and other jamming systems can be described by
common theoretical approaches [4]. In recent years, several
aspects of glasses and granular media have been studied with
similar approaches. Static structures have been studied
to understand the relevance of the network of force chains
between grains or atoms to the dynamics of the jammed
state [5]. Also, since both grains and glasses undergo non-
equilibrium “glassy” dynamics, the idea that an effective
thermodynamics can be used has received considerable
attention [6,7].

In this paper we also transfer knowledge from one field to
another and show that the glassy dynamics of granular media
is characterized by the appearance of spatiotemporal struc-
tures similar to the ones described as dynamic heterogeneity
in glassformers [8] and dense colloidal suspensions [9]. Dy-
namic heterogeneity is believed to play a crucial role in the
glass formation, and forms the core of recent theoretical de-
scriptions [10,11]. Physically, it stems from the existence of
spatial correlations in the local dynamics that extend beyond
the ones revealed by static pair correlations. To study dy-
namic heterogeneity, correlators that probe more than two
points in space and time have to be considered [8,10-12].
These spatial fluctuations have never been studied in models
or experiments on granular compaction [13], although caged
particle dynamics was recently studied in a sheared system
[14]. Here we prove the emergence of large dynamic length
scales in a particle model studied in detail in the context of
granular compaction [15-19]. We take advantage of its rela-
tive simplicity to compute analytically multipoint correla-
tions studied in glass formers and confirm our results by
numerical simulations.

We consider the variant of the parking lot model [15]
introduced in Ref. [16]. It is a one-dimensional process in
which hard blocks of unit size are first irreversibly deposited
at random positions on a line of linear size L until no place is
available. Time scales are counted from the end of this depo-
sition process, which corresponds to ¢,,=0. In a second step,
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particles are allowed to diffuse with a coefficient of diffusion
D. The last dynamical rule consists of deposition events.
When particles have diffused in such a way that a void of
unit size opens, the void is instantaneously filled by a new
particle and the density, p(z,)=N(t,)/L, increases by 1/L,
N(z,,) being the number of particles present at time ¢,,. These
rules lead to slow dynamics, because the larger the density
the longer it takes to open a void. A more general version of
this model includes evaporation [15,17]. It displays the ge-
neric features observed in granular compaction: logarithmic
increase of the density [15-17], aging [17,19], non-Gaussian
density fluctuations [18], effective temperatures, and link
with Edwards entropy [17]. The time evolution of the density
also describes the experiments,
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where p.., ag, a;, 7, and t, are fitting parameters. For the
present model without evaporation Eq. (1) holds at large z,,
with p,=a,=7=1, ay=t,=0. Here we focus on local dy-
namic quantities and their spatial correlations through both
analytic calculations and Monte Carlo simulations. The re-
sults of the simulations have been obtained by averaging
over 2 X 10* independent histories with L=250. Time is mea-
sured in units of the diffusion constant, D, which is set to
unity.

In Fig. 1 we illustrate the results reported in this paper,
namely the emergence of spatiotemporal correlations in dy-
namic trajectories of compacting granular systems. In this
figure, black (white) denote particles that are more (less)
mobile than the average on a time scale of the order of the
structural relaxation time. The time extension of the trajec-
tory is 10°, the spatial extension L=500, and the final density
p(10°)=0.91. The emergence of large-scale correlations in
the local dynamics is evident, since domains that extend
spatially over a hundred particles can be observed, despite
the absence of any such large static correlations between
particles. Spatial clustering of fast and slow regions is
the hallmark of dynamic heterogeneity [8-10,12]. A closer
look at the left part of the figure shows that the dynamic
length scale is visibly smaller at shorter times, suggesting

pty) = pe— [ao Ta; ln(
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FIG. 1. Space-time pattern of dynamic fluctuations: particles are
represented in black (white) when moving slower (faster) than av-
erage. Local dynamics is measured via the self-intermediate scatter-
ing function, Eq. (3), with k=, at fixed 7—1,,=2 X 10*.

that spatial correlations are larger when the dynamics be-
comes slower, and possibly diverge in the jamming limit of a
full system.

How did we build Fig. 1? As in supercooled liquids, in-
formation on local dynamics is accessed by following the
dynamics of individual particles. Consider two times f,, and
t>1,>1. The distribution of particle displacements is the
self-part of the van Hove function,

Nl(zy,)

N 2 - enena), @)

Gy(r,t,t,) =

where 6r,(t,t,)=r/t)-r/t,) is the displacement of particle i
between times 7, and ¢ and only particles present at time ¢,,
are summed over. Brackets indicate an average over initial
conditions. Its Fourier transform is the self-intermediate scat-
tering function

N(ty,)

N 21, (cos[kér(t,1,)]). (3)

Aging will manifest itself through an explicit dependence of
F(k,t,t,) on its two-time arguments [6]. In the following we
focus on the value k=2, which corresponds to displace-
ments of the order of the particle size. Since dynamic het-
erogeneity relates to spatial fluctuations about the averaged
two-time dynamics, we have shown in Fig. 1 spatial fluctua-
tions about F(k,z,t,). We colored black (white) those par-
ticles for which OF,(k,t,t,)=cos[kdr(t,t,)]-F,(k,t,t,) is
negative (positive), i.e., those particles that move more (less)
than average in a particular realization.

To further quantify spatial correlations we consider the
structure factor of the dynamic heterogeneity,

F(k,t,t,) =

N
1 .
SH@1.1,) = —— 2 (SFSF, el - (4)
ka l,m
where f,(t,t,)=N"'S{5F(k,t,t,)* normalizes the structure
factor and some obvious time and wave-vector dependencies
have been removed, for clarity. By definition, the structure
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factor is built from two-time two-point quantities, which is
the minimum requirement to probe the spatiotemporal pat-
terns of Fig. 1. The small ¢ limit in Eq. (4) defines a dynamic
“four-point” susceptibility,

Xk(t’tw) =Sk(q=0’t’tw)v (5)

which can be rewritten as the variance of the fluctuations of
the spatially averaged two-time dynamics. Physically, dy-
namic fluctuations increase when the number of indepen-
dently relaxing objects decreases [12]. Normalizations en-
sure that y; is finite in the thermodynamic limit, except at a
dynamic critical point [11].

The quantities introduced above can be estimated analyti-
cally as follows. Between two deposition events, the total
free volume is L(1—p) and thus the slow dynamics is equiva-
lent to a continuum version of a symmetric exclusion process
at density p=p/(1-p), i.e., involving caged dynamics.
This process is then mapped onto a fluctuating interface
model as follows [20]: We introduce an “interface” position
r(x,1) such that r(x=i,1)=r;(z). Fluctuations around the uni-
form configuration or flat interface are then introduced,
h(x,t)=r(x,t)—x/p. The variation dh(x,t)=h(x+dx,?)
—h(x,1) of the interface fluctuation for 1 <dx<<L is a sum of
dx independent Poissonian variables with variance p~2 so
that P[dh(x,t)]~exp[—(dh)*/(2dx/a)] where we defined
a=p”. This leads to the equilibrium distribution

Pe[{h(x)}] = eXP(— g f dX[Vh(X)]z), (6)

associated to an Edwards-Wilkinson dynamics [21] of the
interface deviation,

oh(x,1)

P aV2h(x,t) + 5(x,1), (7)
where 7 is a Gaussian white noise with zero mean and vari-
ance (7(x,1)p(x",t"))=28(x—x")8(t—1"). We see that devia-
tions from the averaged position of a particle arise with an
elastic penalty in the interface representation. This elastic
behavior makes the following calculation similar to the
evaluation of the elastic contribution to the dynamical sus-
ceptibility (5) in supercooled liquids performed in Ref. [22].
Equation (7) is first solved in the Fourier space,

t

h(g.H) = e "h(g.t,) + f dr' (gt )e ), (8)

lW

where we have defined the time difference 7=7—t,,. A crucial
approximation is made here since « in Eq. (8) has in fact a
logarithmic time dependence. This amounts to neglecting the
effect of further deposition events on the particles already
present at f,. Since deposition is such a rare event at large
times this approximation should capture the evolution of the
local dynamics, as our numerical simulations shall confirm.
Using (8), one easily gets
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FIG. 2. Comparison of the numerical and analytical evaluations
of x(t,1,) as a function of r=t—1,, for k=27 and 1,,=6250, 12 500,
25 000, 50 000, 100 000 (from bottom to top).

Fy(k,1,1y,) =6Xp(—k2\/ a?:)g(o)), )

w

where g(x):fiodqei"x(l—e“’z/z)/qz, so that g(0)=(2m)"2.
Equation (9) is a classic result for the ordering process of
one-dimensional random walkers [23]. It shows that
F(k,t,t,) displays aging behavior and scales with 7/ 7(z,,),
with a logarithmically increasing relaxation time scale,
7(ty) ~ alty,)/k*. At large times, —1,,> 1, particles are sub-
diffusing, (5ri2(t,tw)>~ \7/alt,,), and the van Hove function
(2) is a Gaussian. Gaussiannity is a consequence of the dif-
fusive nature of the microscopic particle motion that causes
the discrepancy with the non-Gaussian distributions of dis-
placements recently reported experimentally for a bidimen-
sional geometry [14].
The dynamic susceptibility (5) can also be computed,

f “’Sh{p() ( t)\27_>]—1
Xeltit) =

( 262 — )

cosh 27g(0) | -1

plty)

_alty) T

S JT( Tk(tw)>’ (10

where F(x) is a scaling function defined from the first line of
Eq. (10). Careful analysis of Eq. (10) shows that y,(z,?,)
goes from zero at 7=0 to the asymptotic value
xi(t—o,t,)=alt,)/ (2 via a maximum
Xi ~ alty)/k* when 7~ 7(t,). In Fig. 2 we show the dy-
namic susceptibility as a function of time separation 7 for
various ages t,, obtained in numerical simulations. The lines
through the data are from Eq. (10). They are in excellent
agreement with the data when t,, becomes large, justifying
the approximation made above that the dynamics at large
times is slow enough that deposition events have little influ-
ence on local dynamics.

The curves in Fig. 2 strikingly resemble the four-point
susceptibilities discussed for supercooled liquids approach-
ing their glass transition [8] and simple coarsening systems
[12]. As for those systems, we conclude that dynamics is
maximally heterogeneous when observed at time separations
close to the relaxation time scale, itself dependent of the age
of the sample. To our knowledge no experimental determi-
nation of the dynamic susceptibility x(z,t,) has been re-
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FIG. 3. (Color online) Inset: Simulated dynamic structure
factor (4) as a function of ¢ for parameters as in Fig. 2 and for
t=7(t,,). Main: Dynamic scale invariance, Eq. (11), is revealed
by rescaling space by &, and S}, by x;. The full line is the analytical
result using the mapping to the Edwards-Wilkinson interface
model.

ported for granular media, although the experimental setup
described in Ref. [14] would probably allow its determina-
tion.

The dynamics susceptibility x;(z,z,,) measures the volume
integral of a spatial correlator. Therefore, an increasing sus-
ceptibility directly suggests the existence of a growing dy-
namic correlation length. This is most directly seen in the
Fourier space when the wave-vector dependence of the dy-
namic structure factor (4) is considered. We have obtained an
analytical form for Si(q,z,1,,) but it is too lengthy to be re-
ported here. In Fig. 3 we compare this analytical expression
for the wave-vector dependence of S,(q,1,t,,) for various t,,
at time separations corresponding to the maximum of the
dynamic susceptibility to numerical simulations. Again,
the agreement between analytical and numerical results is
excellent.

At fixed t,, the structure factor is characterized by a pla-
teau at small ¢ whose height is given by x;(#,). When ¢
increases S;(q,t,t,) leaves the plateau and decreases to 0 at
large g. When ¢, is increased the plateau becomes higher and
it ends at a smaller wave vector but its overall shape is un-
changed. This implies a dynamic scale invariance such as
found in glass formers [10,11]: rescaling times by 7,(z,,) and
space by &(t,)~ a(t,)/k* makes trajectories statistically
equivalent. Formally this means that the following scaling
law is obeyed:

Sk(q7 Tk’tw) = X;(tw)gk[qgk(tw)] . (1 1)

Again we note that data in Fig. 3 strikingly resemble dy-
namic structure factors measured both in realistic super-
cooled liquids [8] and coarse-grained models for the glass
transition [10].

A major result of the above analysis is the existence of a
dynamic length scale, &(t,), which grows logarithmically
with time when compaction proceeds, and therefore diverges
when the systems jams. A diverging length scale provides
support to the temporal renormalization group argument de-
veloped in Ref. [16], but we see no obvious connection be-
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tween the dynamic criticality described here and the various
power law scalings observed in static systems approaching
jamming from above [24]. Physically, collective rearrange-
ments of particles are needed to create a void of unit size, the
denser the system the more cooperative the dynamics. A na-
ive determination of & would rely on a free volume argument
[25]. The mean free volume available to particles is 1/p, so
that the number of particles required to have a fluctuation of
the free volume equal to unity is '~ p*>~ &(t,,). This simple
physical argument underlies the cooperative nature of the
dynamics which is more formally captured by four-point cor-
relation functions, Egs. (4) and (5).
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The idea that the size of collective motions increases
when dynamics becomes slow is certainly not new. Multi-
point correlation functions have now been measured in very
different materials with similar qualitative results. That large
dynamic length scales control glassy dynamics suggests the
possibility that few universality classes underly and possibly
unify the dynamical behaviour of a much wider diversity of
jamming materials.
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